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Abstract. The differential cross-section for elastic scattering of deuterons at 700 MeV, 6Li and 6He at
2.07 GeV nuclei on 12C nucleus is calculated under the assumption of two-cluster (for deuterons and 6Li)
and three-cluster (for 6He) structure of incident particle. For 6Li-12C and 6He-12C elastic scattering it is
shown that there are quantitative distinctions in the behaviour of the observables calculated in the above
approaches.

PACS. 24.10.Ht Optical and diffraction models – 25.45.-z 2H-induced reactions – 25.45.De Elastic and
inelastic scattering

1 Introduction

In recent years considerable attention has been given to
the interaction of weakly bound particles with nuclei at
intermediate energies.Various approaches were used to de-
scribe these processes (see, for example, [1–3] and refer-
ences therein). One of them is the multiple diffraction scat-
tering theory (MDST) [4]. To describe the elastic scatter-
ing of nuclei by nuclei on the basis of MDST the sum-
mation of multiple scattering series is usually executed,
i.e. it is supposed that projectile and target nucleons in-
teract with each other. Unfortunately, elastic scattering
of light nuclei on nuclei in the energy region E ∼ 100
MeV/nucleon cannot be satisfactorily described in the
multiple scattering theory with “elementary” free ampli-
tudes [5,6]. In other words, complex nuclei change their
properties at the collisions due to the effects of nucleon
matter, where they are placed, and the effects of polariz-
ability and “free” amplitudes should be changed to effec-
tive [7,8].

At present due to discovery of neutron “halo” in some
light nuclei (6He, 11Li etc.) their structure pecularities are
intensively investigated (see for example [9–11] and refer-
ences therein). The recent works on these nuclei based on
three-cluster model (α+ n + n for 6He and 9Li + n + n for
11Li nuclei). From this point of view the 6He nucleus is a
more ideal system than 11Li, because the α-core is more
inert than the 9Li-core i.e. α-core can be really considered
as an inert one, while the 9Li nucleus has a pronounced
three-cluster structure. Notice that, in spite of this, the
theoretical calculations [10,11] show that the dineutron-
like configuration and the cigar-like configuration coexist
in the 6He nuclei with almost an equal probability. There-
fore it is of interest to investigate the manifestation of

these two configurations in the scattering of 6He nucleus
on 12C nuclei, where the α-cluster structures are suffi-
ciently reliably established.

In this paper the model proposed in [12,13] was devel-
oped for the case of deuterons, 6Li and 6He nuclei scat-
tered on 12C nuclei. In sect. 2 the elastic d-12C and 6Li-12C
scattering was considered under the assumption of a two-
cluster structure of the projectile (n + p for deuterons
and α + d for 6Li), and in sect. 3 the 6He-12C scattering
was considered under the assumption of a three-cluster
structure of the projectile (α+ n + n).

2 Scattering of deuterons and 6Li nucleus on
12C nuclei

In 12C nuclei the α-cluster structure is strongly mani-
fested in their interaction with intermediate-energy parti-
cles. By means of the α-cluster model with dispersion and
MDST we have described observables in elastic and inelas-
tic scattering of intermediate-energy protons, antiprotons,
deuterons and others particles on 12C nuclei [7,8,14]. The
results of the calculations were in agreement with the ex-
perimental data. We show that taking into account four
nucleon correlations of the α-cluster type and the corre-
lations between α-clusters allowed us to obtain a better
agreement with the experimental data as compared with
the free-nucleon model [14]. Moreover, in this cases the
spin-rotation functions differ qualitatively.

According to the α-cluster model with dispersion the
carbon nucleus is considered as made up of three α-
clusters arranged at the vertices of an equilateral triangle.
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Table 1.

E Reaction βc1 Gc1 βs1 Gs1

(GeV) (fm2) (fm2) (fm2) (fm3)

1.37 α-α 0.691 + i0.194 −0.229 + i2.444

0.7 d-α 0.679 + i0.183 −0.471 + i1.586 0.328− i0.049 −0.469 + i0.215

0.35 p-α 0.309− i0.116 −0.092 + i0.857 0.498 + i0.098 0.206 + i0.397

These α-clusters can be displaced from their most proba-
ble positions of equilibrium. The density of the 12C nuclei
is determined by [15]

ρ∆(ξ,η) =
∫
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1
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where ξ and η are the Jacobi coordinates of the α -clusters.
Parameters d and ∆ characterize the distance between α-
clusters and the probability of the α-clusters displacement
from its most probable position at the vertex of the equi-
lateral triangle, respectively. The values of the parameters
d and ∆ obtained in [15] allow us to describe the measured
form factor of 12C nucleus up to the values of transferred
momenta q ≤ 3 fm−1.

According to the MDST, the elastic scattering ampli-
tude of “elementary” particles on 12C nuclei can be deter-
mined as

f(q) =
ik

2π

∫
d2bd3ξd3ηeiqbρ∆(ξη)Ω(b, rj), (4)

where b is the impact parameter, rj are the α-cluster coor-
dinates of the 12C nucleus, q is the transferred momentum,
k is the wave vector of the incident particle.

In this formula the profile function Ω(b, rj) is

Ω(b, rj) = 1 −
3∏

j=1

[1 − 1
2πik

∫
d2qe−iq(b−rj)f̃(q)], (5)

where f̃(q) is the elastic scattering amplitude of the in-
cident particle on the α-clusters of the 12C nucleus. The
amplitude f̃(q) has the form

f̃(q) = fc(q) + fs(q)σn , (6)

where σ is the spin operator of an incident particle,
n = [k, k′]/|[k, k′]|, k and k′ are the wave vectors of the
incident and scattered particle. In this formula the cen-
tral fc(q) and spin-orbit fs(q) part of the amplitude f̃(q)
can be approximated as follows [14]:

fc(q) = k

2∑
i=1

Gci exp(−βciq
2), (7)

fs(q) = kq
2∑

i=1

Gsi exp(−βsiq
2) . (8)

The parameters Gc1, βc1, Gs1 and βs1 are the fitting
ones, and parameters Gc2, βc2, Gs2 and βs2 are related
with Gc1, βc1, Gs1 and βs1 through [14]

Gc2 =
3iG2

c1

32βc1
, βc2 =

1
2
βc1 , (9)

Gs2 =
3iGc1Gs1βc1

8(βc1 + βs1)2
, βs2 =

βc1βs1

βc1 + βs1
. (10)

The values of the parameters Gc1, βc1, Gs1 and βs1

obtained in [7,8,14] are presented in table 1.
Consider the elastic scattering of deuterons and 6Li

nucleus on 12C nuclei. Assuming that deuterons and 6Li
nucleus consist of two clusters (n+p configuration for
deuterons and α+d for 6Li), we construct the incident
particle-target amplitude of the scattering amplitude of
their clusters on the 12C nucleus (formulae (4)-(10)). Ac-
cording to [12,13] the elastic scattering amplitude of the
two-cluster nucleus by the 12C nucleus can be presented
in the form

F (q) =
k

k1
f1(q)S(γ1q) +

k

k2
f2(q)S(γ2q)

+
ik

2πk1k2

∫
d2q′f1(γ2q + q′)f2(γ1q − q′)S(q′), (11)

where γi = mi

(mi+mj)
, mi are the incident particle cluster

mass, i, j = 1, 2.
The structure form-factor S(q) has the form

S(q) =
∫

d3r|ϕ0(r)|2e−iqs, (12)

where ϕ0(r) is the wave function of the incident particle.
We have chosen the wave function ϕ0(r) in the form

ϕ0(r) =

√
2αβ(α+ β)

r
√

4π(α− β)
[e−αr − e−βr], (13)

where α = 0.2314 fm−1 for deuteron and α = 0.305 fm−1

for 6Li nucleus, β = 5.18α.
On the basis of the above approach we have calculated

the differential cross-section dσ/dΩ (mb/sr) for elastic
scattering of deuterons at 700 MeV and of the 6Li nucleus
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Fig. 1. Differential cross-section of the elastic d-12C scattering
at 700 MeV as a function of the scattering angle. Experimental
data are from [16].

at 2.07 GeV on the 12C nucleus. The results obtained are
presented in figs. 1 and 2 (solid curves).

As can be seen from fig. 1 the above approach allows us
to describe the experimental data without fitting parame-
ters. The dashed curve in fig. 1 presents the results of the
calculations where the incident deuteron is considered as
an “elementary” particle [7]. The effective d-α amplitude
used in this approach automatically includes the effects
related with the changing of deuteron structure proper-
ties during the interaction with α-clusters of 12C nuclei
and the effects of nucleon matter, where the deuteron is
placed. As can be seen from fig. 1 the differential cross-
section calculated in [7] is in better agreement with exper-
imental data than that calculated in the above approach.
We suppose that the discrepancy between the calculated
and measured observables can be due to the fact that in
the calculations these effects are not properly taken into
account. Notice that the small correction to the structure
form-factor (12) leads to an improvement in the agreement
between the calculated and measured cross-sections.

The dashed curve on fig. 2 has been calculated in the
above approach by using the 6Li ground state wave func-
tion in the form

ψ1 =
√

α

2π
e−αr

r
. (14)

As can be seen from fig. 2 the differential cross-sections
for the elastic 6Li-12C interaction calculated with 6Li
ground state wave functions in the form (13) and (14)
do not differ significantly.
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Fig. 2. Differential cross-section of the elastic 6Li-12C scatter-
ing at 2.07 GeV as a function of the scattering angle.

3 Scattering of the 6He nucleus on 12C nuclei

Consider the elastic scattering of the 6He nucleus on 12C
nuclei. Assuming that the 6He nucleus has a three-cluster
configuration (α + n + n), the elastic scattering 6He-12C
amplitude can be presented in the form

F (q) =
ik

2π

∫
d2bd3rd3ρeiqb|Ψ(r, ρ)|2

×(ω(b1)+ω(b2)+ω(b3)−ω(b1)ω(b2)−ω(b1)ω(b3)

−ω(b2)ω(b3) + ω(b1)ω(b2)ω(b3)) , (15)

ω(bj) =
1

2πik

∫
d2qe−iqbjf(q), (16)

Ψ(r, ρ) = ψ1(r)
√

µ

2π
e−µρ

ρ
, (17)

where ρ = rα − 1
2 (rn1 + rn2), r = rn1 − rn2 are the Jacobi

coordinates of 6He clusters, the amplitude f(q) is given
by eqs. (4)–(10), α=0.429 fm−1, µ=0.136 fm−1.

Integrating (15) we have

F (q) = F1(q)+2F2(q)+2F3(q)+F4(q)+F5(q), (18)

F1(q) =
k

k1
f1(q)S1(q), (19)

F2(q) =
k

k2
f2(q)S2(q), (20)

F3(q) =
ik

2πk1k2

∫
d2q′f1(q′)f2(q − q′)S3(q,q′), (21)

F4(q) =
ik

2πk2k3

∫
d2q′f2(q′)f3(q − q′)S4(q,q′), (22)
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Fig. 3. Differential cross-section of the elastic 6He-12C scat-
tering at 2.07 GeV as a function of the scattering angle.

F5(q) =
ik

(2π)2k1k2k3

∫
d2q′d2q′′f1(q − q′ − q′′)

×f2(q′)f3(q′′)S5(q,q′,q′′), (23)

S1(q) =
∫

d3rd3ρ|Ψ(r, ρ)|2e−i2β2qw, (24)

S2(q) =
∫

d3rd3ρ|Ψ(r, ρ)|2e−ia1q, (25)

S3(q) =
∫

d3rd3ρ|Ψ(r, ρ)|2e−ia1q−ia2q
′
, (26)

S4(q) =
∫

d3rd3ρ|Ψ(r, ρ)|2e−ia1q+iq′s, (27)

S5(q) =
∫

d3rd3ρ|Ψ(r, ρ)|2e−i2β2qw+ia3q
′+ia4q

′′
, (28)

where a1 = −β1w+ 1
2s, a2 = w+s, a3,4 = w∓ 1

2s, w and
s are the projections of the vectors ρ and r on the plane
perpendicular to the incident 6He direction.

On the basis of the above approach we have calculated
the differential cross-section dσ/dΩ (mb/sr) for the elastic
scattering of the 6He nucleus at 2.07 GeV on 12C nucleus.
The results obtained are presented in fig. 3 (solid curve).
The dashed curve in fig. 3 is calculated in sect. 2 for elastic
6Li-12C scattering at 2.07 GeV (fig. 2, the dashed curve).
The dot-dashed curve was calculated in [3] by means of di-
rect evaluation of Glauber integrals using the Monte Carlo
method.

Notice that the 6He wave function used allows us to
describe the differential cross-section of the elastic p-6He
scattering at 717 MeV (fig. 4, solid curve). The calcula-
tions have been executed by means of MDST with the p-α
amplitude from [14] and the p-n amplitude from [18].

As can be seen from fig. 3 in the region of the second
and third maxima there are quantitative distinctions in
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Fig. 4. Differential cross-section of the elastic p-6He scatter-
ing at 717 MeV as a function of the momentum transferred.
Experimental data are from [17].

the behaviour of the observables calculated in these ap-
proaches. These distinctions can be due to manifestation
of three and two cluster configurations in 6He and 6Li nu-
clei. In other words, in the above approach 6He and 6Li
nuclei differ only by configuration choice (the three-cluster
one for the 6He nucleus and the two-cluster one for the 6Li
nucleus). In the approach we have neglected the Coulomb
interaction. At the energy considered the Coulomb inter-
action can give a contribution in the region of the first
maxima, since there distinctions between the calculated
observables are small. Therefore, we suppose that the dis-
tinctions in the calculated differential cross-sections are
due to manifestation of the two- and three-cluster config-
uration mode in 6He and 6Li nuclei. Unfortunately, the
lack of experimental data on the 6He,6Li-12C scattering
at 2.07 GeV does not allow us to reconstruct the 6He,6Li-
12C elastic scattering amplitude with reasonable precision.
The experimental investigation of these processes can give
the information needed.

The author is indebted to Prof. Yu.A. Berezhnoy, Dr. V.V.
Pilipenko and Dr. Yu.A. Pozdnyakov for valuable discussions.
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